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Abstract—Carpooling taxicab services hold the promise of
providing additional transportation supply, especially in ex-
treme weather or rush hour when regular taxicab services are
insufficient. Although many recommendation systems about
regular taxicab services have been proposed recently, little re-
search, if any, has been done to assist passengers to find a
successful taxicab ride with carpooling. In this paper, we
present the first systematic work to design a unified recommen-
dation system for both regular and carpooling services, called
CallCab, based on a data driven approach. In response to a
passenger’s request, CallCab aims to recommend either (i) a
vacant taxicab for a regular service with no detour, or (ii) an
occupied taxicab heading to the similar direction for a carpool-
ing service with less detour, yet without assuming any
knowledge of destinations of passengers already on occupied
taxicabs. To analyze these unknown destinations of occupied
taxicabs, CallCab generates and refines taxicab trip distribu-
tions based on GPS datasets and context information collected
in the existing taxicab infrastructure. To improve CallCab’s ef-
ficiency to process such a big dataset, we augment the efficient
MapReduce model with a Measure phase tailored for our ap-
plication. We evaluate CallCab with a real world dataset of
14, 000 taxicabs, and results show that compared to ground
truth, CallCab can reduce 64% of the total mileage to deliver
all passengers and 63% of passenger’s waiting time.

I. INTRODUCTION

Among all transportation modes, taxicabs play a promi-

nent role in residents’ daily commutes in metropolitan

areas [1], e.g., in New York City [2], over 100 companies

operate more than 13, 000 taxicabs with a daily demand of

660, 000 passengers. But regular taxicab services are very in-

sufficient during extreme weather or rush hour in big cities,

e.g., New York City and Beijing, where the average waiting

time for a taxicab in rush hour is more than 30 minutes [1].

To address such an issue, carpooling taxicab services are

proposed in some taxicab networks to provide additional

transportation supply, yet with the same number of taxicabs.

In a carpooling service, a passenger can hail an occupied

taxicab on streets or wait at a taxicab stand to carpool.

However, different from well known regular taxicab ser-

vices where any vacant taxicab can take a passenger to any

reasonable direction, in a carpooling taxicab service, a new

passenger has to find a carpoolable taxicab, which refers to

an occupied taxicab with the existing passengers heading to

the similar direction (no need to be the same destination)

with this new passenger. For example, a passenger heading

to a direction to the east may not consider a taxicab with ex-

isting passengers heading to the west as a carpoolable
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taxicab, since according to “First Come, First Served” policy,

there will be a long distance detour for this new passenger.

So when vacant taxicabs are not available, a key question for

a passenger is how to find a carpoolable taxicab?

Unfortunately, almost all taxicab recommendation system-

s [3] [4] [5] [6] [7] are focused on how to find a vacant
taxicab. Little work, if any, is focused on how to find a car-
poolable taxicab for a passenger. More importantly, how to

find a carpoolable taxicab cannot be addressed by configur-

ing the existing solutions for finding a vacant taxicab. This is

because for a particular new passenger, a recommendation

system can recommend any vacant taxicab in a regular ser-

vice; but in a carpooling service, it has to recommend a

particular carpoolable taxicab heading to the similar direc-

tion with this new passenger. This is challenging because in

the existing taxicab infrastructure, even with the real-time

taxicab GPS tracking, a recommendation system cannot

know future directions of occupied taxicabs, since the desti-

nations of passengers on these occupied taxicabs are

unknown, until the passengers are dropped off. A straightfor-

ward yet trivial solution is to let drivers log passengers’

destinations right after passengers enter taxicabs. But such a

system is not feasible in the real world, since it requires an

infrastructure upgrade with hardware for drivers to manually

input destinations, which can be potential hindrances in

terms of both cost and efficiency. So it is challenging to as-

sist a specific passenger to find a carpoolable taxicab in the

existing infrastructure, when no vacant taxicabs are available.

In this paper, we argue that a data driven approach is a

promising solution to address such an issue. In the existing

taxicab infrastructure of big cities, taxicab’s location and sta-

tus are uploaded to a dispatching center periodically (e.g., 2

records/minute), forming a large GPS dataset. This dataset

has a large volume (several TBs) and grows fast (1TB per

year), and it can be used to recreate daily operations of thou-

sands taxicabs in the networks. More importantly, from this

dataset, we can draw taxicab trip distributions to analyze an

occupied taxicab’s destination (thus future directions) based

on context information, e.g., the route this taxicab has

already passed, time of day, or day of week, etc. These dis-

tributions enable a recommendation system to assist

passengers to find carpoolable taxicabs.

Admittedly, dispatching taxicabs or informing passengers

based on GPS datasets is not a new method. But existing

dispatching or recommendation systems assume that only va-

cant taxicabs can pick up passengers, and little research, if

any, has been done on carpooling taxicab services. In this
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work, we conduct the first effort to propose a unified recom-

mendation system for both CArpooLing and reguLar

taxiCAB services, called CallCab, based on both GPS

datasets and context information collected in the existing in-

frastructure. But dealing with such a big dataset (in terms of

high volume and velocity, yet with raw unstructured format)

requires an efficient design and processing model. In this pa-

per, we are inspired by the efficient MapReduce model [8]

proposed by Google to handle large datasets, and augment it

with a new Measure phase for our application. Specifically,

the key contributions of this paper are as follows:

• To the best of our knowledge, we conduct the first work

that recommends either a vacant or a carpoolable taxi-

cab (an occupied taxicab heading the similar direction)

in responds to a passenger’s request with a unified

method, and provide a comprehensive study of how to

analyze occupied taxicabs’ routes without destinations

of their passengers for large-scale taxicab networks.

• To achieve our goal, we propose CallCab, which mines

taxicab trip distributions from historical and real-time

GPS datasets collected in the existing taxicab infrastruc-

ture without extra costs. Then, according to these trip

distributions conditioning on collected context informa-

tion (e.g., the last pickup locations and current locations

of nearby taxicabs, time of day, day of week, etc) for a

particular new passenger, CallCab recommends either a

vacant taxicab for a direct route (no detour distance), or

a carpoolable taxicab for a carpool route (small detour

distance) based on the similarities between directions of

this new passenger and potential taxicabs.

• To quantify the similarity between directions, we propose

a novel metric called Detour Ratio, which is shown as

a ratio between a particular passenger’s detour distance

and the distance of the direct route. This detour ratio

unifies recommendations for both regular services (with

detour ratios equal to 0) and carpooling services (with

detour ratios larger than 0). Thus, CallCab recommends

a taxicab (either vacant or occupied) with the minimum

detour ratio for a particular new passenger.

• To efficiently process GPS datasets for detour ratio cal-

culation, we propose a generic MapReduceMeasure
model, inspired by MapReduce. This model provides 3
kinds of abstractions to hide details of data processing,

and can be used for various applications.

Our evaluation effort is comprehensive. We test CallCab on

a real world dataset consisting of GPS records from more than

14, 000 taxicabs in a big metropolitan area with a population

of more than 10 million. The results show that compared with

ground truth, CallCab can reduce 64% of the total mileage

and reduce 63% of passenger waiting time, simultaneously.

The rest of the paper is organized as follows. Section II

introduces the related work. Section III presents the existing

infrastructure. Section IV proposes our main idea. Section V

depicts our MapReduceMeasure model. Section VI de-

scribes our detailed design. Section VII validates our design

with datasets, followed by the conclusion in Section VIII.

II. RELATED WORK

The concept of carpooling taxicab services is not brand

new, but in the real world it is normally negotiated privately

by drivers and passengers in an ad hoc manner, when vacant

taxicabs are not available. We lack a systematic design for a

unified recommendation for both regular and carpooling taxi-

cab services. Two types of previous work related to our work

are introduced as follows.

A. Regular Taxicab Services
Due to the increasing availability of GPS devices on taxi-

cabs, taxicab GPS records have been employed by several

systems to improve the efficiency of regular taxicab services.

For example, taxicab GPS records are able to help taxicab

operators better oversee taxicabs and provide timely services

to passengers, e.g., discovering temporal and spatial causal

interactions to provide timely and efficient services in certain

areas with disequilibrium [6] [7], and detecting anomalous

taxicab trips to discover driver fraud or road network

changes [9]. In addition to taxicab operators, several systems

are proposed for the benefit of passengers or drivers, e.g., al-

lowing taxicab passengers to query the expected duration

and fare of a planed trip based on previous trips [3] and

query real-time taxicab availability to make informed trans-

portation choices [4], and recommending optimal pickup

locations or routes [5]. Moveover, taxicab GPS records can

help beyond the taxicab business: (i) traces consisting of GP-

S records from experienced taxicab drivers can assist other

drivers improve their driving performance [10]; (ii) GPS

records can be used for navigating newer drivers to smart

routes based on those of experienced taxicab drivers [11];

(iii) large scale taxicab GPS traces enable us to better under-

stand traffic conditions of cities [12]. Yet existing research

on taxicab systems are focused on vacant taxicabs, assuming

that one taxicab can accommodate only a single delivery re-

quest at a time. In contrast, our recommendation system

aims for both vacant and occupied taxicabs. Technically, we

focus on recommending a taxicab ride (vacant or occupied)

to passengers with the minimum detour distance, which has

not been investigated before.

B. Ad Hoc Carpooling Taxicab Services
Currently, carpooling taxicab services exist in both devel-

oped and developing countries in an ad hoc fashion. For

example, in Beijing, ad hoc taxicab carpooling is allowed

with the consent of both passengers and drivers, and every

passenger pays 60% of the regular fare. In New York City,

up to four passengers can carpool together in a single taxi-

cab ride during 6 AM to 10 AM on a weekday, along three

preset routes in Manhattan at a flat fare of $3 or $4 per pas-

senger, significantly less than the regular metered rates [13].

However, in the aforementioned services, both time and loca-

tions are preset in a small-scale ad hoc manner, and no

systematic method under the existing infrastructure is

provided to improve the efficiency of carpooling.
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III. EXISTING TAXICAB INFRASTRUCTURE

In this section, we introduce the existing taxicab infras-

tructure and discuss semantics data mined from a big dataset

collected in this infrastructure.

A. Infrastructure Description

In the existing taxicab networks of large cities, e.g., New

York City, Beijing, and Shenzhen, taxicabs are equipped

with GPS and communication devices, in addition to fare

meters. To monitor global status of all taxicabs, dispatching

centers with cloud servers are also established in most taxi-

cab networks. Thus, as shown in Figure 1, the existing

taxicab infrastructure typically consists of two parts: taxicabs

in the frontend; dispatching centers in the backend.

Cell Tower
Cell Tower

Dispatching Center
Cloud Server

GPS 
Records

Cell Tower

Fig 1: Existing Infrastructure

In such an infrastructure, (i) with GPS devices, taxicabs

record their physical status, e.g., current location, direction,

etc; (ii) with fare meters, taxicabs record their logical status

at any time, i.e., with passengers or not; (iii) with communi-

cation devices, both physical and logical status are uploaded

periodically to dispatching centers via cell towers, in terms

of a GPS record, which mainly consists of the following pa-

rameters: Plate Number; Date and Time; GPS Coordinates;

Status Bit: with passengers or not when this record is up-

loaded. Thus, a large GPS dataset is stored in cloud servers

of dispatching centers for analysis. Figure 2 gives statistics

about such a GPS dataset of a Chinese city Shenzhen with

10 million population.

Collection Period 6 Months 
Collection Date 01/01-06/30
# of Taxicabs 14,453

# of Pickup Events 98,472,628
# of GPS records 3.9 Billion
Uploading Speed 2 Records/mins

GPS Dataset Summary

Fig 2: Dataset Summary
Fig 3: Origins & Destinations

As shown in Figure 2, a half-year dataset contains almost

four billion GPS records. Such a raw large dataset has a very

high resolution, which can be used to locate a particular

taxicab at fine-granularity in terms of both time and space.

But such a fine-granular large GPS dataset has many records

of no interest, and such a raw GPS dataset is not in a format

ready for analysis. In the next subsection, we data mine

some semantics from this large fine-granular raw dataset,

which is used to reduce the resolution (smaller yet compact

size) of the raw dataset and to produce logical concepts, i.e.,

trips, for our system design in Section V.

B. Semantics in Existing Infrastructure

Based on the historical and real-time GPS records, we

separate individual trips from the entire dataset by continu-

ously observing the change of Status Bit on GPS records of

the same taxicab. If a Status Bit turns to 1 from 0 in two

consecutive records of a taxicab, then it indicates that this

taxicab just picked up a passenger in the location indicated

by the GPS coordinates, which is considered as an origin or

a pickup location of a trip; if a Status Bit turns to 0 from 1,

then it indicates that this taxicab just droped off a passenger

at the location considered as a destination or a dropoff loca-

tion of a trip. Figure 3 gives examples of origins and

destinations. A GPS record set consisting of visited locations
between an origin and its corresponding destination is

considered as a trip, which is the key unit of our design.

Visiting Locations 
with No Passengers

Visiting Locations 
with Passengers

Origins of 
Trips

Destinations 
of Trips

L1
L2

L3

L4 L5

L6
L7L8

Fig 4: Taxicab Trips
Figure 4 gives examples of a trip, based on a recreated scenario

in an aerial map according to GPS records. A taxicab starts

with no passengers at location L1, and picks up a passenger

between L2 and L3 (the GPS record uploaded in L2 indicates

no passengers in this taxicab, while the GPS record uploaded

in L3 indicates a passenger in this taxicab), and drops off this

passenger between L4 and L5, and picks up a new passenger

between L6 and L7, and finally leaves the map at L8. Thus,

a complete trip is given from L3 to L5.

Given the semantics data mined from the real-time GPS

dataset, the existing recommendation systems can easily locate

and recommend a vacant taxicab to new passengers based on

their locations. But if no nearby vacant taxicab is available,

the existing recommendation systems cannot recommend an

occupied taxicab for a carpooling service, since destinations

of existing passengers on occupied taxicabs are unknown, and

thus they fail to recommend a carpoolable taxicab heading in

a similar direction as the new passenger.

But the large GPS dataset and context information provide

is an opportunity to analyze the future directions of occupied

taxicabs without destinations of passengers already in these

taxicabs, and thus to locate carpoolable taxicabs, which is

introduced in the next section.

IV. MAIN IDEA

Our CallCab aims for both regular and carpooling taxicab

services. Since regular services are commonly understood, we

give an example of a scenario where carpooling services are

applied, and then present the main idea of CallCab.
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T1
P

T2
 

Known Location Unknown Location

I1

I2

I0

I4

I3

I5

Fig 5: Taxicab Operating Scenario

A. Taxicab Carpooling Scenario
Figure 5 gives a scenario where a passenger P is waiting

at origin I0 and heading to destination I5. Under the existing

infrastructure, P provides a request with origin I0 and desti-

nation I5 to a recommendation system for a taxicab. Based

on real-time GPS records, a recommendation system cannot

find an available vacant taxicab, but can locate two nearby

occupied taxicabs T1 and T2 that will pass P ’s origin I0
soon, as potential carpoolable taxicabs.

To recommend T1 or T2 to P , a recommendation system

has to analyze actual traveling distance for P to be carpooled

into T1 or T2. For example, if carpooled into T1 at origin I0,

P first has to be “involuntarily” taken to a location I3 (which

is unknown destination of existing passengers on T1) before

being dropped off at P ’s own destination I5, according to a

“First Come, First Served” policy. Thus, the actual traveling

distance for P to be carpooled into T1 is the distance (| · |) of

a carpool route, i.e., |I0 ⇒ I3| + |I3 ⇒ I5|, instead of a di-
rect route with a direct distance of |I0 ⇒ I5|. The difference

between the carpool route and the direct route leads to a de-
tour distance of (|I0 ⇒ I3| + |I3 ⇒ I5|) − |I0 ⇒ I5|. With

both a detour distance and a direct route’s distance, we can

have a Detour Ratio ρPT1
= detour distance

direct distance
to show the utility of

a passenger P being carpooled into a taxicab T1. Different

occupied taxicabs passing I0 have different destinations,

leading to different detour ratios for P to carpool. One of

the optimal carpooling strategies for P is to select a taxicab

with the smallest detour ratio as the carpoolable taxicab.
However, only the origins of passengers on T1 or T2 (i.e.,

I1 or I2) are known for the recommendation system, and

their destinations (i.e., I3 or I4) are completely unknown in

the existing infrastructure. Therefore, the recommendation

system cannot calculate detour ratios, thus failing to

recommend a taxicab with a smaller detour ratio to P .
But in the existing infrastructure, although destinations are

unknown during the trip, destinations are stored in terms of

GPS records, after passengers are dropped off. These histori-

cal destinations and collected real-time context information

is used to analyze unknown destinations of existing passen-

gers in taxicabs, and thus to analyze detour ratios for a

particular new passenger to carpool with these existing

passengers in taxicabs. The details are given next.

B. Main Idea
The main idea of CallCab is shown in Figure 6.
1) Trip Distributions : In CallCab, GPS records for all

taxicabs are stored as a big dataset. Thus, inferred from GPS

records, destinations and corresponding origins comprise nu-

merous trips, which are used to construct trip distributions.

Such distributions can generate destinations of trips that start

at a particular origin and pass a particular location.

Trip 
DistributionsGPS dataset

Expected Detour 
Ratio Calculations

Online 
Recommendations

Passenger Request 
(Origin, Destination)

Context Information
(Current Locations, Time of Day, Day of Week)

Fig 6: Main Idea

2) Detour Ratio Calculations : Upon receiving a request
from a passenger P , CallCab will employ trip distributions

to calculate an Expected Detour Ratio ρPT1
for P to carpool

with a particular nearby taxicab T1, according to a basic and

an advanced design. In both basic and advanced design,

based on trip distributions, CallCab (i) calculates a potential

destination set DST1
for T1 (DST1

includes all destinations

associated to the origin of existing passengers on T1; this o-

rigin is obtained by T1’s last pickup locations), and then (ii)

reduces the size of DST1
by context information, and finally

(iii) assigns probabilities for all destinations in reduced

DST1
to calculate a weighted average ρPT1

. The key differ-

ences between the basic and advanced designs are (i) how to

reduce the size of DST1 , and (ii) how to assign the

probabilities for destinations in DST1 , as shown by Figure 7.

T1
P

 I1I2 I0
I4

I3 I5Origin Current Location

Fig 7: Detour Ratio Calculations

Basic Design: (i) Based on trip distributions and T1’s last

pickup location I1 (the origin of existing passengers on T1),

CallCab calculates DST1 = {I2, I3, I4, I5}. (ii) If we assume

that drivers will use shortest trips to deliver all passengers,

then we can eliminate some destinations in DST1
, according

to T1’s current location I0. CallCab first obtains shortest paths

between I1 to all destinations in DST1
from the dataset. Then,

a destination Ii is eliminated from DST1 , if the shortest path

from I1 to Ii does not include I0. For example, CallCab
eliminates I2 from DST1

, since the shortest path from I1 to

I2 does not include I0 in the normal situation; i.e., a normal

trip starting at I1 and passing I0 is not the shortest trip from I1
to I2, so I2 is not a potential destination for a trip starting at I1
and passing I0. (iii) Assigning equal probabilities (i.e., 33%)

for the remaining I3, I4 and I5 in DST1 , CallCab calculates

a weighted average ρPT1
by their locations.

Advanced Design: The advanced design is built upon the

basic design. However, in the advanced design, (i) based on

richer context information, CallCab further reduces the size

of DST1
obtained in the basic design, e.g., CallCab can e-

liminate I5 from DST1
, if I5 has never been a destination

for a trip at the current time of day and day of week. (ii) In-

stead of assigning equal probabilities for the remaining I3
and I4 as in the basic design, CallCab assigns probabilities

to I3 and I4 based on their frequencies in distributions to

more accurately calculate ρPT1
in the advanced design, e.g., if

among six trips starting from I1 in the distribution, four of

them have I3 as their destination, while others have I4 as

their destination, then CallCab assigns Pr(I3) = 4
6 and

Pr(I4) =
2
6 to calculate a weighted average ρPT1

.

To summarize, the basic design conditions trip distribu-

tions on only limited context information, e.g., origin and
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current locations of taxicabs, while the advanced design fur-

ther considers richer context information, e.g., popularity of

destinations, time of day, day of week, etc.

3) Online Recommendation : By analyzing the detour

ratio for every nearby taxicab, CallCab recommends a taxi-

cab with the minimum expected detour ratio (either a vacant

taxicab with 0 detour ratio or an occupied taxicab with a

small detour ratio) for this passenger. Based on updated con-
text information, e.g., taxicab current location, this

recommendation can be constantly updated.

C. Opportunity for MapRduce in CallCab Design

The key step of CallCab is how to obtain trip distributions

based on raw GPS datasets. However, the raw GPS dataset

shows physical aspects of taxicabs, while our design is focused

on logical concepts, e.g., trips, which are not directly given in

raw datasets. Further, the raw GPS dataset typically has a large

volume and interconnects multi-dimensional GPS records with

high resolution, so though detailed enough, much of the raw

dataset is of no interest in our design.

The above features fit the common understanding of big

data [14]. To tackle this big dataset regarding these features,

we need to map this raw physical GPS dataset to a filtered

and compressed logical dataset (e.g., trips) for analysis. In

addition, we have to intelligently process this raw physical

GPS dataset to a compacted size with only interesting data

(e.g., trips including a particular intersection). In this work,

we are inspired by MapReduce model proposed to deal

with such big datasets [8], and augment it by an additional

Measure phase to present a generic MapReduceMeasure
model, which can be used independently from our design. In

Section V and VI, employing the recommendation system as

a showcase, we demonstrate how to use our model to tackle

a big dataset that is not in a format ready for analysis.

V. MapReduceMeasure MODEL

In this section, we first introduce the basic yet generic

MapReduceMeasure model, and present some preliminar-

ies for our specific application, and define Map, Reduce,

and Measure operations tailored for our application.

A. MapReduceMeasure Introduction

Our MapReduceMeasure model is mainly based on

MapReduce, which is proposed as a generic design and

programming model for processing and generating large

datasets. MapReduce has two key operations: Map and

Reduce. A dataset user specifies a Map operation that takes

key/value pairs as input to generate a set of intermediate

key/value pairs, and a Reduce operation that takes all inter-

mediate values associated with the same intermediate keys as

inputs to generate a set of output values.

Though sufficiently generic to perform many real world

tasks, the two-phase MapReduce model is best at generat-

ing a set of values based on the same key. The impact of one

key on the values generated by another key is difficult to e-

valuate in the current model. In this work, we propose a

third phase Measure, and it measures the impact of one key

on the values generated by another key, and outputs a new

value as a metric to show the impact. The generic types of

MapReduceMeasure model is given as follows.

Map : (key1, value1) → Set[key2, value2];

Reduce : (key2, Set[value2]) → Set[value2];

Measure : (key3, Set[value2]) → value3.

B. Preliminaries

To convert the raw GPS dataset into a format ready for

our model, we propose a mathematical concept, the Carpool
Graph, and convert a set of raw GPS records into a logical

trip record based on the carpool graph.

1) Carpool Graph: The basic unit for a passenger to car-

pool with others is a road segment between intersections.

Therefore, we define a carpool graph as a simple graph

where vertices represent intersections and edges represent

road segments between adjacent intersections. Figure 8

shows a carpool graph created by a given road map.

I2 I3 I5

I4 I7

I6

I1

I5 I6I3I2

I4 I7I1

Fig 8: Carpool Graph

2) GPS Record Conversion: A set of raw GPS records

belonging to a single logical trip is identified by several key

GPS records, indicating the origin, the visited locations, and

the destination. How to identify them is mentioned in Sec-

tion III. Based on the set of GPS records belonging to a

single logical trip, we create a trip record to capture the key

information about this trip, e.g., the origin, the destination,

the intersections passed, the time and date.

Visiting Locations Origin Destination

I2 I3 I4

I1

I5

Carpool Graph

Fig 9: a Trip Record Based on a Carpool Graph

Based on a carpool graph, Figure 9 shows how to convert

25 raw GPS records to a trip record. Masks on Taxicab

Number and coordinates are for privacy concerns. 25 GPS

records describe the detailed trajectory of a trip, which can

be mapped on a given road map, corresponding to an unique

carpool graph. Thus, a trajectory is represented by a series of

carpool graph’s vertices, indicating intersections this trip

went through, e.g., intersection I2, I3, and I4. We also add

two intersections I1 and I5 near to the origin and the desti-

nation to complete the representation as in the figure. By the

similar preprocessing, we convert the entire GPS dataset to a

new trip record dataset as inputs for our model.



6
TABLE I. Model Operations

Name Input Output Note
MapByIS Trip Dataset Set of [IS, TRIP ] pairs TRIP is a trip including intersection IS
MapByTD Trip Dataset Set of [TD, TRIP ] pairs TRIP is a trip starting at Time of Day TD
MapByDW Trip Dataset Set of [DW , TRIP ] pairs TRIP is a trip starting at Day of Week DW

ReduceByIS1 I1, Set of [TRIP ] Set of [TRIP1] TRIP1 is one of trips including I1 as their first intersection
ReduceByIS2 I2, Set of [TRIP ] Set of [TRIP2] TRIP2 is one of trips including I2 as their intermediate intersection
ReduceByTD TD, Set of [TRIP ] Set of [TRIP3] TRIP3 is one of trips starting at time of day as TD
ReduceByDW DW , Set of [TRIP ] Set of [TRIP4] TRIP4 is one of trips starting at day of week as DW

MeasureB IPO , IPD , Set of [TRIP ]Ti
Detour Ratio ρPTi

Basic design to obtain the weighted average expected detour ratio

MeasureA IPO , IPD , Set of [TRIP ]Ti
Detour Ratio ρPTi

Advanced design to obtain the weighted average expected detour ratio

C. Model Operations
Via the trip record dataset obtained in the last subsection,

we propose Map, Reduce, and Measure operations.
1) Map Operations: The Map operation is to reorganize

the trip record dataset by generating pairs containing new

keys (e.g., a specific intersection, time of day, or day of

week) and the values associated to these new keys (e.g., a

trip includes this specific intersection, or a trip starts at a

specific time of day or day of week). Three Map operations

are proposed in Table I, e.g., MapByIS generates a set of

[key=intersection, value=trip] pairs, e.g., [I1, Trip#1] where

Trip#1 includes intersection I1. Note that multiple keys are

paired with the same value, e.g., I2 is also paired with

Trip#1. Fig 10 gives examples of MapByIS on all

intersections (e.g., I1, I2, etc).

Key
Trip# Taxi# Date Intersection I1 I2 I3 …

1 XX1 6/10 Time 8:01:45 8:04:20 8:04:29 …
Trip# Taxi# Date Intersection I6 I1 I2 …

2 XX2 6/10 Time 9:01:06 9:03:59 9:06:29 …

Trip# Taxi# Date Intersection I1 I2 I3 …
1 XX1 6/10 Time 8:01:45 8:04:20 8:04:29 …

………………………………………………………………………………………..

Value

I1

I1

………………………………………………………………………………………..

I2

Fig 10: Map Operation

2) Reduce Operations: Based on Map operations, Reduce
operation is to reduce the size of sets of values associated

to the same key. We propose four Reduce operations as in

Table I, e.g., ReduceByIS1 takes an intersection I1 and all

trips associated to I1 as an input, and generates a smaller set

of trips that include I1 as their first intersection.
3) Measure Operation: We propose MeasureB and

MeasureA for the Basic and Advanced design as in Sec-

tion IV-B2, respectively, which both take the following as

inputs: (i) a new passenger P ’s Origin IPO ; (ii) P ’s Destina-

tion IPD ; (iii) a trip set [TRIP ]Ti
, indicating a particular trip

distribution about a taxicab Ti. Both operations output a

detour ratio ρPTi
for P to be carpooled into Ti as follows.

ρPTi
=

∑

I
Ti
Di

∈DSTi

(Pr(ITi
Di

)· (|I
P
O ⇒ ITi

Di
|+ |ITi

Di
⇒ IPD |)− |IPO ⇒ IPD |

|IPO ⇒ IPD | )

where DSTi
is the destination set of [TRIP ]Ti

, and includes

all distinct destinations of trips in [TRIP ]Ti . In MeasureB
for the basic design, assuming every destination has an equal

probability, Pr(ITi

Di
) = 1

|DSTi
| where |DSTi | is the size of

DSTi
; whereas in MeasureA for the advanced design,

assuming every destination has a different probability ac-

cording to the times it appears in the trip set [TRIP ]Ti
(i.e.,

frequency), Pr(ITi

Di
) =

|ITi
Di

|
|[TRIP ]Ti

| where |ITi

Di
| is the number

of ITi

Di
appearing in [TRIP ]Ti

as a destination. Note that if

Ti is a vacant taxicab, both operations return 0 as the detour

ratio, since no detour is needed for a vacant taxicab.

VI. CallCab DESIGN

In this section, based on the model we proposed in the last

section, we present the detailed CallCab design for a unified

recommendation for both vacant and occupied taxicabs.

A. Trip Distributions
We envision a scenario where in the existing infrastruc-

ture, CallCab maintains trip distributions based on GPS

records that a dispatching center received. By our Map op-

erations in the model we generate different trip distributions

for a particular intersection, time of day, or day of week. For

example, a trip distribution for a particular intersection

indicates how many taxicab trips pass such an intersection a-

mong the total taxicab trips. Figure 10 gives the partial

outputs of MapByIS operations on all intersections.

B. Expected Detour Ratio Calculations
When a passenger P wants to find a taxicab, P makes a

request with the Origin IPO and the Destination IPD to CallCab.
Based on IPO and real-time GPS records, CallCab collects the

following context information.

• Time of Day TD and Day of Week DW : We consider

both Time of Day (in terms of hourly windows) and Day

of Week (in terms of SUN, MON, TUS, ..., and SAT)

in our context information. It has be shown in previous

work that taxicab trips are highly patterned in terms of

Time of Day and Day of Week [3]. For example, a trip

distribution for 8AM on one Monday is very similar to

a trip distribution for 8AM on another Monday, but it

may be significantly different from a trip distribution for

11PM on a Sunday.

• Nearby Taxicab Set T : As potential taxicab candidates,

T is a set of taxicabs (either vacant or occupied) heading

to P ’s origin IPO , within a recommendation radius RT to

IPO (e.g., 100 meters). For every taxicab Ti ∈ T , based

on real-time GPS records, CallCab can further obtain

(i) Last Pickup Location ITi

O (i.e., the Origin of existing

passengers on Ti), and (ii) Current Location of Ti, which

equals to IPO , since Ti is heading to P .

Based on the above context information, CallCab can gener-

ate several particular distributions by model operations.

These distributions are used to calculate an expected detour

ratio for P to be carpooled into any taxicab Ti ∈ T .
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1) Basic Design: For a particular taxicab Ti ∈ T , CallCab
generates two distributions and combines them together: (i) the

trip distribution on intersection ITi

O (the last pickup location

of Ti); (ii) the trip distribution on intersection IPO (P ’s origin,

i.e., Ti’s current location), by the following model operations.

TripSet(ITi
O ) = ReduceByIS1(ITi

O ,MapByIS);

TripSet(IPO ) = ReduceByIS2(IPO ,MapByIS);

TripSet(Basic) = TripSet(ITi
O ) ∩ TripSet(IPO ).

According to the above TripSet(Basic), CallCab can obtain

the expected detour ratio ρPTi
as follows, under the assumption

that every destination has the same probability.

ρPTi
= MeasureB(IPO , IPD ,TripSet(Basic))

2) Advanced Design: CallCab further generates two

more trip distributions and combines them with

TripSet(Basic) obtained in the basic design.

TripSet(TD) = ReduceByTD(TD,MapByTD);

TripSet(DW ) = ReduceByDW (DW,MapByDW );

TripSet(Advanced) = TripSet(TD) ∩ TripSet(DW ) ∩ TripSet(Basic).

According to TripSet(Advanced), CallCab obtains the ex-

pected detour ratio ρPTi
as follows, under the assumption that

every destination has a different probability according to its

frequencies in TripSet(Advanced).

ρPTi
= MeasureA(IPO , IPD ,TripSet(Advanced))

C. Online Recommendation

In our online recommendation, among all ρPTi
where

Ti ∈ T , the taxicab TMIN associated with the minimum ρ is

the one CallCab recommended to the passenger P .

CallCab sorts all nearby taxicabs according to ρ, and if two

or more taxicabs have the same ρ, the tie is broken by the

distances to the passenger P . Further, CallCab marks all n-

earby taxicabs with ρ on the carpool graph sent back to the

passenger’s mobile device. We envision that a passenger fol-

lows this carpool graph to hail the recommended taxicab.

During this process, some context information, e.g., the pas-

senger’s location or the nearby taxicabs’ current locations,

will be changed, which may change detour ratios of recom-

mended taxicabs. Therefore, CallCab updates this carpool

graph based on the updated information, until the passenger

is moving together with a taxicab, which indicates this

passenger has already found a ride.

VII. CallCab EVALUATION

We draw a sample dataset from the entire dataset introduced

in Section III to test CallCab. This sample dataset includes

one week of GPS records of more than 14, 000 taxicabs. Due

to the large size of the datasets, we mainly found two kinds

of errors. (i) Location Error: GPS coordinates indicate that a

taxicab is off the road. (ii) Missing Records: a fair amount of

GPS records are missing. The errors may result from different

causes, e.g., GPS device malfunctions, software issues, etc. We

perform a simple preprocessing to clean the datasets to rule

out taxicabs with more than 10% of missing or errant records.

A. Evaluation Overview

We compare two versions of CallCab, Basic and

Advanced, against a Random and a Heuristic recommenda-

tion. Based on GPS datasets, we also obtain trip records

which show the real passenger requests. Then, we use the

requests that happened in the dataset of one day as future re-

quests to test CallCab. Based on a trip record such as

[pickup time, origin, dropoff time, destination] in the dataset,

we generate a passenger request [request time=pickup time,

origin, destination]. According to the request, all systems

first locate a nearby taxicab set T where taxicabs are within

RT radius to the origin, based on traces of taxicabs in the

dataset for a particular day. If there are vacant taxicabs in T ,

all schemes recommend the closest vacant taxicab to passen-

gers. Otherwise, (i) Random recommends one of taxicabs in

T at random; (ii) Heuristic recommends the closest taxicab

in T to the passenger; (iii) Basic calculates the expected de-

tour ratio for every taxicab in T based on the basic design in

Section VI-B1, and then recommends the taxicab with the

minimum expected detour ratio; (iv) Advanced works simi-

larly, except that it calculates the detour ratio based on the

advanced design in Section VI-B2.

Several metrics are proposed to show system performance.

We use Actual Detour Ratio as a key metric to show the

efficiency, which is obtained by actual travel distance−direct distance
direct distance

,

and given a specific recommended taxicab, this metric can be

calculated by the same method as in Section IV-A.

Further, we investigate Percentage of Reduced Mileage.

Different from the first metric focusing the benefit of an in-

dividual passenger, this metric is used to evaluate how much

the total mileage can be reduced (leading to less gas con-

sumption and less traffic congestion) by an efficient system

recommending more suitable occupied taxicabs for passen-

gers. Assuming M is the total mileage used to deliver all

passengers separately (i.e., only regular services with vacant

taxicabs), and m is the total mileage used to deliver all

passengers with either vacant or occupied taxicabs recom-

mended by a specific system, then the percentage of reduced

mileage equals M−m
M

.

More importantly, we justify carpooling services by show-

ing Percentage of Reduced Waiting Time due to

carpooling, which has not been investigated before. With car-

pooling, a passenger can significantly reduce the waiting

time to take a carpooled taxicab, instead of waiting for a va-

cant taxicab. But in the current dataset, the actual waiting

time for a passenger is not given. However, the upper bound

of the waiting time is determined by the time that two taxi-

cabs pass the same pickup location. For example, if a GPS

dataset shows that (i) when a vacant taxicab T1 passes a lo-

cation L at time τ , T1 does not pick up any passenger, and

(ii) when another vacant taxicab T2 passes the same location

L later at time τ + Δτ , T2 picks up a passenger, then the



8

upper bound of waiting time for this passenger is Δτ . As-

suming the actual waiting time is equally distributed from 0
to Δτ , and then we obtain an expected waiting time Δτr for

a regular service in the dataset. The waiting time Δτc for

carpooling is decided by the time when the passenger starts

to wait (obtained by τ + Δτ − Δτr) and the time when the

recommended occupied taxicab passes the passenger’s

location (obtained from the dataset).
Finally, we investigate the impact of Insufficient Datasets

on the performance of CallCab, e.g., only one day dataset is

available for weekday trip distribution analysis.
We evaluate the performance according to the above metrics

for different hourly windows for weekdays and weekends, and

at different radii RT , which determine the size of the nearby

taxicab set T . The default setting of RT is 250 meters. For

both weekdays and weekends, we use requests from a one day

dataset and test all systems with traces of taxicabs on other

days. The average results are reported.

B. Actual Detour Ratio
In this subsection, we evaluate CallCab’s performance in

terms of the average actual detour ratio.
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Fig 11: Detour Ratio in Weekday
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Fig 12: Detour Ratio in Weekend

1) Weekday Detour Ratio: Figure 11 plots the average ac-

tual detour ratio of all passengers in different one hour time

windows of five weekdays. During the rush hours of a week-

day, e.g., 7-10, the average actual detour ratios for all four

schemes are higher than those of non-rush hours, e.g., 1-7.

This is because there are many vacant taxicabs during

non-rush hours, whereas in rush hours passengers have to

use carpooling services, which leads to high actual detour ra-

tios. But the Basic and Advanced solutions outperform

Random and Heuristic, which have a high average actual de-

tour ratios during rush hours, i.e., 60% and 55%. Advanced

outperforms Basic by 25% on average during rush hours, in-

dicating that the probability considering frequency in

Advanced leads to a better performance.
2) Weekend Detour Ratio: Figure 12 gives the average ac-

tual detour ratios in different one hour time windows for two

weekends. During rush hours of a weekend, e.g., 10-21, the

average actual detour ratios for Basic and Advanced are

much lower than those of Random and Heuristic. This is be-

cause during rush hours, Random and Heuristic recommend

more occupied taxicabs with long detours to passengers ac-

cording to their recommendation methods. But both versions

of CallCab utilize the trip distribution to recommend occu-

pied taxicabs with less expected detour ratios, so it leads to a

lower actual detour ratio. During rush hours, Advanced out-

performs Basic by 34%, indicating that with more carpool

opportunities during rush hours, Advanced more accurately

assigns probabilities for every potential destination for

recommendations of corresponding taxicabs.

C. Percentage of Reduced Mileage

In this subsection, we investigate CallCab’s performance

via the percentage of the reduced total mileage.
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Fig 14: Mileage in Weekend

1) Weekday Reduced Mileage: Figure 13 shows the per-

centage of reduced mileage in different one hour time slots

for five weekdays. During the rush hours of a weekday, e.g.,
7-10, the percentage of reduced mileage is higher than that

of non-rush hours for all four schemes. This is because dur-

ing rush hours, there are more carpooling services than

regular services, which leads to the reduction of the total

mileage to deliver the same number of passengers. But Basic

and Advanced outperform Random and Heuristic during both

rush hours and non-rush hours, which shows the effective-

ness of CallCab. In addition, Advanced outperforms Basic

by 18% on average during rush hours, indicating the

superiority of Advanced.

2) Weekend Reduced Mileage: Figure 14 shows the per-

centage of reduced mileage for two weekends. Different

from weekdays, for the weekend, the high percentages of re-

duced mileage are between 10-21 for both versions of

CallCab. The performance on weekends is different than

those on weekdays, since people take taxicabs at different

times on weekdays and weekends. There is no significant

high percentage of reduced mileage in certain time windows

among 10-21 than others. The relative performances are

similar as in Figure 13.
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Fig 16: Mileage VS. Radius

D. Impact of Recommendation Radius

In this subsection, we study the impact of recommendation

radius on CallCab’s performance.

1) Actual Detour Ratio with Different Radius: Figure 15

shows the effects of different recommendation radii on the

performance of the four schemes in terms of the average

actual detour ratio from 8AM to 9AM of a weekday. We in-

crease the recommendation radius from 50 meters to 250
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meters, which increases the size of potential taxicabs that

can be recommended. Heuristic is not affected by such an

increase, since it only recommends the closest taxicab. Ran-

dom is not significantly affected, since it recommends a

taxicab based a random selection. But with the increase of

radius, both Advanced and Basic have better actual detour

ratios, because a large recommendation radius gives them

more taxicabs to select for a better recommendation. Also,

with the increase of radius, Advanced always outperforms

Basic, which confirms our observations in the previous

subsections.

2) Reduced Mileage with Different Radii: Figure 16 shows

the effects of different recommendation radii on percentage of

reduced total mileage from 8-9 of a weekday. With the increase

of the radius from 50 meters to 250 meters, the performance of

both versions of CallCab increases, while those of Random

and Heuristic stay the same. But when the radius is close to

250M, the increase for both versions of CallCab slows down,

which is because the radius is large enough to have a sufficient

number of taxicabs for recommendations, and an even larger

radius would not help.
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E. Percentage of Reduced Waiting Time

In this subsection, we show the percentage of reduced

waiting time due to carpooling in Figure 17. Because the

method we use to calculate waiting time is based on taxicabs

passing locations of pickup events, we present the percentage

of reduced waiting time from hours 8 to 20 of a weekday,

due to the high densities of taxicabs and pickup events. Dur-

ing rush hours, e.g., from 8 to 10 A.M., all systems with

carpool services reduce the waiting time by as much as 63%
on average. Heuristic outperforms the rest because it recom-

mends the closest occupied taxicab for carpooling service,

and other systems perform similarly to each other. In short,

carpooling services can significantly reduce passenger’s

waiting time, when regular taxicab services are not sufficient.

F. Impact of Insufficient Datasets

In this subsection, we evaluate CallCab when there is no

sufficient dataset for analysis. Figure 18 shows the perfor-

mance of CallCab in terms of detour ratio in one rush hour

8AM to 9AM of a weekday with the maximum recommen-

dation radius, when one to five days of dataset are used for

analysis. We observe that even though with only a dataset of

one day, CallCab still achieves satisfactory performance,

e.g., Advanced and Basic achieves a 16% and 28% detour

ratio, respectively. When more datasets are available, the

performance of both versions of CallCab becomes better.

VIII. CONCLUSION

In this work, we analyze, design, and evaluate a recom-

mendation system CallCab for both carpooling and regular

taxicab services in large-scale taxicab networks. CallCab
data mines taxicab trip distributions from historical GPS

datasets collected in an existing infrastructure, and recom-

mends either a vacant taxicab with no detour distance or a

carpool route with a small detour distance. We employ a

generic MapReduceMeasure model to efficiently tackle the

raw GPS dataset to obtain recommended taxicabs. We verify

CallCab with a real world dataset of 14, 000 taxicabs, and

results show that compared to ground truth, CallCab can

save the passenger’s initial wait time and fare, by decreasing

both 64% of the total mileage and 63% of the passenger’s

waiting time, leading to a faster and affordable service.
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